

FEATURES

- ► Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- ▶ 80-160VDC Wide Input Voltage Range
- ► Fully Regulated Output Voltage
- ► High Efficiency up to 88%
- ▶ I/O Isolation 3000VAC with Reinforced Insulation
- ▶ Operating Ambient Temp. Range -40°C to +94.5°C
- No Min. Load Requirement
- ► Very Low No Load Power Consumption
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► Remote On/Off Control
- ► EMI Emission EN 55032 Class A & FCC Level A Approved
- ► EMC Immunity EN 61000-4-2,3,4,5,6,8 Approved
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MOA20C series is the latest generation of 20Watt isolated DC-DC power module with wide input range of 80-160VDC with 9 models for 5/5.1/12/15/24/48/±12/±15/±24VDC tightly output voltage in a chassis and DIN-Rail mounting type with terminal strip connections which specifically design for electricity and renewable energy field applications. Key performance featuring high I/O isolation 3000VAC with reinforced insulation, high efficiency for wide operating ambient temp. range -40°C to +94.5°C, no min. load requirement, very low no-load power consumption, remote on/off, build-in EMC filter for EMI emission EN 55032 Class A and EMC immunity EN 61000-4-2,3,4,5,6,8 approved, build-in fault condition protection include under-voltage, overload, over voltage and short circuit protection.

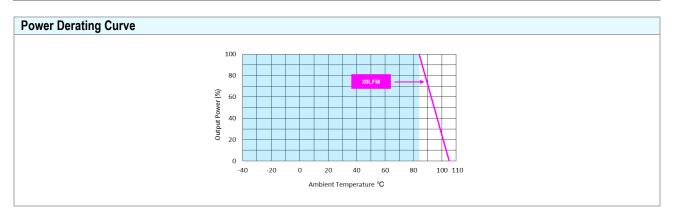
The MOA20C series has been intensely qualified to safety approval UL/cUL/IEC/EN 62368-1 with CB report and CE marking which offer a solution for the applications where high voltage input range, high efficiency for wide operating ambient temp. range, isolated power with high I/O isolation & insulation level, fully encapsulated package and eliminate the power board are required.

Model Selection Guide								
Model Number	Input Voltage	Output Voltage	Output Current Max.	Input Current		Over Voltage	Max. capacitive Load	Efficiency (typ.)
Model Number	(Range)			@ Max. Load	@ No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MOA20-110S05C		5	4000	209		6.2	6800	87
MOA20-110S051C		5.1	4000	213		6.2	6800	87
MOA20-110S12C		12	1670	207		15	1200	88
MOA20-110S15C	440	15	1340	208		18	750	88
MOA20-110S24C	110 (80 ~ 160)	24	830	206	10	30	300	88
MOA20-110S48C	(00 ~ 100)	48	420	208		60	75	86
MOA20-110D12C		±12	±830	208		±15	380#	87
MOA20-110D15C		±15	±670	210		±18	380#	87
MOA20-110D24C		±24	±420	211		±30	150#	87

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (100 ms max.)		-0.7		170	
Start-Up Threshold Voltage				80	VDC
Under Voltage Shutdown		65	70		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30	60	ms
Input Filter	All Models	Internal Pi Type			

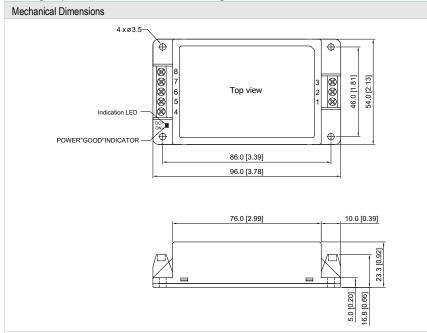
Remote On/Off Control					
Parameter	Conditions Min. Typ. Max.				
Converter On	3.5V ~ 12V or Open Circuit				
Converter Off	0V ~ 1.2V or Short Circuit				
Control Input Current (On)	Vctrl = 5.0V			0.5	mA
Control Input Current (Off)	Vctrl = 0V			-0.5	mA
Control Common	Referenced to Negative Input				
Standby Input Current	Nominal Vin		3		mA


Output Specifications						
Parameter	Conditions / Model		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±1.0	±2.0	%Vnom.
Output Voltage Balance	Dual Out	put, Balanced Loads			±2.0	%
Line Regulation	Vin=Min.	to Max. @Full Load		±0.5	±1.0	%
Load Regulation	lo	=0% to 100%		±0.5	±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load				±5.0	%
Minimum Load	No minimum Load Requirement					
	0-20MHz Bandwith	5V & 5.1V Output Models			100	mV _{P-P}
Ripple & Noise		±24V & 48V Output Models			200	mV _{P-P}
		Other Output Models			150	mV _{P-P}
Transient Recovery Time	250/ 1	and Ctan Change		250		μsec
Transient Response Deviation	25% Load Step Change ₍₂₎			±3	±5	%
Temperature Coefficient					±0.02	%/°C
Over Load Protection	pad Protection Hiccup			150	180	%
Short Circuit Protection		ery (Hiccup Mo	de 0.5Hz typ.)			

General Specifications						
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit	
WO L L II V II	60 Seconds	3000			VACrms	
I/O Isolation Voltage	Reinforced insulation, rated for 1000Vrms working voltage	3000			VACIIIIS	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100kHz, 1V			2200	pF	
Cuitabia a Francisco	5V & 5.1V Output Models	187	220	253	kHz	
Switching Frequency	Other Output Models	238	280	322	kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	696,909			Hours	
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate)	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 & 60950-1(CB report)				

EMC Specifications							
Parameter		Standards & Level Performance					
EMI	Conduction	TN 55022 TCC nod 15	Without external components	Class A			
EIVII	Radiation	EN 55032, FCC part 15	Without external components	Class A			
	EN 55035						
	ESD	Direct discharge	Indirect discharge HCP &VCP	A			
	ESD	EN 61000-4-2 Air ± 8kV	Contact ±6kV	A			
EMS	Radiated immunity	EN 610	A				
EIVIS	Fast transient	EN 61	A				
	Surge	EN 61	A				
	Conducted immunity	EN 610	Α				
	PFMF	EN 610	Α				

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+94.5	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		

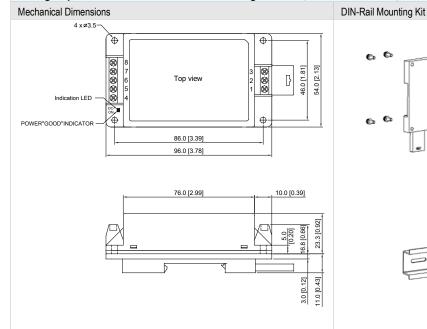

Notes

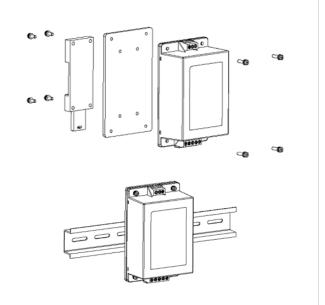
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 Specifications are subject to change without notice.

Package Specifications Chassis Mounting

Connections					
Pin	Single Output	Dual Output			
1	Remote On/Off	Remote On/Off			
2	-Vin	-Vin			
3	+Vin	+Vin			
4	NC	NC			
5	-Vout	-Vout			
6	NC	Common			
7	+Vout	+Vout			
8	NC	NC			

NC: No Connection


- ► All dimensions in mm (inches)
- ► Tolerance: ±0.5 (±0.02)


Physical Characteristics

Case Size : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 107g

Package Specifications with DIN Rail Mounting Bracket (order code AC-DIN-01)

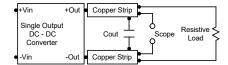
Physical Characteristics

Case Size : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 166g

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC Power Module 20W


Order Code Table					
Standard	With DIN Rail Mounting	g by two Order Code			
MOA20-110S05C	MOA20-110S05C	AC-DIN-01			
MOA20-110S051C	MOA20-110S051C	AC-DIN-01			
MOA20-110S12C	MOA20-110S12C	AC-DIN-01			
MOA20-110S15C	MOA20-110S15C	AC-DIN-01			
MOA20-110S24C	MOA20-110S24C	AC-DIN-01			
MOA20-110S48C	MOA20-110S48C	AC-DIN-01			
MOA20-110D12C	MOA20-110D12C	AC-DIN-01			
MOA20-110D15C	MOA20-110D15C	AC-DIN-01			
MOA20-110D24C	MOA20-110D24C	AC-DIN-01			

Test Setup

Peak-to-Peak Output Noise Measurement Test

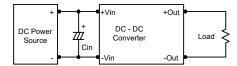
Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -100µA.

Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

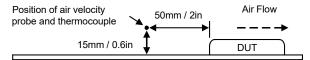
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $10\mu\text{F}$ for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7μ F capacitors at the output.



Maximum Capacitive Load

The MOA20C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

